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Connes’ Distance Function on One-Dimensional
Lattices

Aristophanes Dimakis1 and Folkert MuÈ ller-Hoissen 2,3

Received December 12, 1997

We show that there is an operator with a simple geometric significance which
yields the ordinary geometry of an open and closed linear equidistant lattice via
Connes’ distance function. Some related aspects of distances on graphs are
briefly discussed.

1. INTRODUCTION

The notion of the distance between two points of a space is at the very

origin of geometry and physics. It should be clear, however, that the classical

Euclidean distance no longer makes sense below a certain length scale. Rather,

it has to be replaced by some quantized version (which still has to be defined

and related to measuring devices). It is hoped that generalizations of the
distance concept and, more generally, generalizations of geometric concepts

will guide us toward a new physical theory. In this context a proposal by

Connes (see Connes, 1994, and references therein) appears to be of particu-

lar interest.

According to Connes, the geodesic distance function

d( p, q) 5 infimum of length of paths from p to q (1)

on a Riemannian manifold M can be reformulated as
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d( p, q) 5 sup{ ) f ( p) 2 f (q) ) ; f P !, i [$Ã, fÃ] i # 1} (2)

where ! is a (suitably restricted) algebra of functions on M represented as
multiplication operators fÃon a Hilbert space *, and $Ãis the Dirac operator.

The latter formulation can also be applied to discrete spaces and even general-

ized to ª noncommutative spaces.º A suitable replacement for the operator

$Ãhas to be found, however. In particular, one would like to find an operator

counterpart of certain (simple) geometries in order to gain an understanding
of how to set up a physical theory (e.g., some version of mechanics) in terms

of the new mathematics.

Bimonte et al. (1994) and Atzmon (1996) considered a one-dimensional

lattice with the choice

($Ãs.d. C )k 5
1

2i
( C k 1 1 2 C k 2 1), k P Z (3)

The distances calculated with this symmetric difference operator turned out

to be given by

d(0, 2n 2 1) 5 2n, d(0, 2n) 5 2 ! n(n 1 1) (n P N) (4)

which looks quite remote from the expected result for a linear equidistant

lattice.

In the following two sections we show that there is another operator
which actually produces the expected result, for an open as well as for a

closed linear lattice. Section 4 contains some related comments.

2. THE OPEN LINEAR LATTICE

We consider a finite set of N points. Then ! is the algebra of all complex

functions on it. f P ! will be represented by

f j fÃ5 1
f1 0 0

0 ? ? ?
fN

f1

? ? ?
0 fN 2 (5)

where fk 5 f (k) (numbering the lattice sites by 1, . . . , N ). We choose

the operator
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$ÃN 5 1 0 $ ²
N

$N 0 2 (6)

on * 5 C2N, where

$N 5 1
0 1 0 ? ? ? 0

??? ? ? ? ? ? ? ???
??? ? ? ? 1

0 ? ? ? ? ? ? 0 2 (7)

Then (!, *, $ÃN ) is a spectral triple, a basic structure in Connes’ approach
to noncommutative geometry (Connes, 1995) (see also, Connes, 1996, for a

refinement). It is called even when there is a grading operator. In the case

under consideration such an operator is given by

g 5 1 1 0

0 2 1 2 (8)

It is self-adjoint and satisfies

g 2 5 1, g $ÃN 5 2 $ÃN g , g fÃ5 fÃg (9)

Let us now turn to the calculation of the distance function. With a complex

function f we associate a real function F via

F1 5 0, Fk+1 5 Fk 1 ) fk+1 2 fk ) , k 5 1, . . . , N 2 1 (10)

Then ) Fk+1 2 Fk ) 5 ) fk+1 2 fk ) and

i [$ÃN , fÃ] c i 5 i [$ÃN , FÃ] c i (11)

for all c P C2N. Consequently, in calculating the supremum over all functions

f in the definition of Connes’ distance function, it is sufficient to consider

only real functions. Then QN 5 i[$ÃN , fÃ] is Hermitian and its norm is given

by the maximal absolute value of its eigenvalues. Instead of QN , it is simpler

to consider

QN Q
²
N 5 diag(0, ( f2 2 f1)

2, . . . , ( fN 2 fN 2 1)
2,

( f2 2 f1)
2, . . . , ( fN 2 fN 2 1)

2, 0) (12)

which is already diagonal. This implies

i [$ÃN , fÃ] i 5 max{ ) f2 2 f1 ) , . . . , ) fN 2 fN 2 1 ) } (13)

from which we conclude that d(k, l) 5 ) k 2 l ) .
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Fig. 1. An oriented linear lattice graph.

The choice (3) for $Ãwas motivated by a simple discretization procedure

(which is known to cause the problem of fermion doubling in lattice field

theories). There is, however, no reason why this operator must yield the plain
geometry of a linear equidistant lattice via Connes’ distance function. There

are many geometries which can be assigned to a discrete set and these should

correspond to the choice of some operator $Ã. Now it is certainly of interest

to know what distinguishes our choice (6). This is built from the operator $
in such a way that $Ãis self-adjoint. Moreover, the construction guarantees

that there is a grading operator. So we are left to understand the significance
of $. This matrix is the adjacency matrix of the oriented linear lattice graph

(see Fig. 1). This digraph plays a basic role in a formulation of lattice theories

in the framework of noncommutative geometry (Dimakis and MuÈ ller-Hoissen,

1994, and references cited therein).

Remark. Instead of using $Ãto define Connes’ distance function, we

may use directly $ (which, in general, is not symmetric) and no doubling

in the representation of f. A simple calculation in the case treated above

shows that

i [$N , f ] i 5 i [$ÃN , fÃ] i (14)

so that we obtain the same distances as before.

3. THE CLOSED LINEAR LATTICE

Connecting in addition the last with the first point in the oriented digraph

in Fig. 1, we find that the adjacency matrix becomes

$Nc 5 1
0 1 0 ? ? ? 0

??? ? ? ? ? ? ? ???
??? ? ? ? 1

1 0 ? ? ? 0 2 (15)

For C 5 ( f , c ) P C2N we find

i [$ÃNc , fÃ] C i 2 5 i [$Nc , f ] c i 2 1 i [$ ²
Nc , f ] f i 2

5 o
N

k 5 1
) fk+1 2 fk ) 2( ) c k+1 ) 2 1 ) f k ) 2)
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$ o
N

k 5 1
) ) fk+1 2 a ) 2 ) fk 2 a ) ) 2( ) c k+1 ) 2 1 ) f k ) 2)

5 i [$ÃNc , FÃ] C i 2 (16)

where Fk 5 ) fk 2 a ) . Here and in the following, an index N 1 1 has to be

replaced by 1. Choosing a 5 f1, we have i [$ÃNc , FÃ] i # i [$ÃNc , fÃ] i and Fk 5
) fk 2 f1 ) . It follows that

d(1, n) 5 sup{ ) Fn ) ; F real, F1 5 0, i [$ÃNc , FÃ] i # 1} (17)

The condition i [$ÃNc , FÃ] i # 1 is equivalent to ) Fk+1 2 Fk ) # 1, k 5 1, . . . ,

N. Let n 2 1 # N 2 n 1 1. It is then possible to set the first n 2 1 terms

in the identity

(F2 2 F1) 1 ? ? ? 1 (Fn 2 Fn 2 1) 1 (Fn+1 2 Fn) 1 ? ? ? 1 (F1 2 FN ) 5 0 (18)p p
n 2 1 terms N 2 n 1 1 terms

each separately to 1. Using the trivial identity

) Fn ) 5 ) (F2 2 F1) 1 (F3 2 F2) 1 ? ? ? 1 (Fn 2 Fn 2 1) ) (19)

we now find d(1, n) 5 n 2 1. If n 2 1 . N 2 n 1 1, then each of the last

N 2 n 1 1 terms in (18) can be set to 1. Using

) Fn ) 5 ) (F1 2 FN ) 1 (FN 2 FN 2 1) 1 ? ? ? 1 (Fn+1 2 Fn) ) (20)

we find d(1, n) 5 N 2 n 1 1.

4. SOME COMMENTS

For a linear lattice we have recovered the ordinary distances from the

adjacency matrix (which acts as a shift operator on functions on the lattice)

in Connes’ framework of noncommutative geometry. Corresponding calcula-

tions for other (still comparatively simple) finite graphs turn out to be quite

complicated and hardly possible without the help of a computer.

In Connes’ noncommutative geometry the commutator [$Ã, fÃ] represents
a `differential’ d f. The inequality which appears in the definition of the

distance function can then be written as i df i # 1. Given a differential calculus

(in the abstract algebraic sense), in order to have a distance function we need

a definition of the norm of df. Connes defines it via a representation of the

(first-order) differential algebra. In the case of discrete sets, it is natural to

define a norm by

i d f i 5 sup{ ) f (k) 2 f (l) ) / r kl ; (kl) P E } (21)

where a digraph structure has been assigned to the set by the first-order
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differential calculus (see Dimakis and MuÈ ller-Hoissen, 1994, for details) and

E denotes the set of its arrows. The positive constants r kl assign an individual

length to each arrow. The distance function is then taken to be

d( p, q) 5 sup{ ) f ( p) 2 f (q) ) ; f P !, i d f i # 1} (22)

This recipe reproduces the ordinary distances on the underlying graph.

Let * 5 { j : E ø E ® C}, where E 5 {(kl) P M 3 M; (lk) P E} and

M is the set of points of the digraph. Introducing operators

($Ãj )(kl) 5 j (lk)/ r kl ( " j P *) (23)

and

( fÃj )(kl) 5 f (k) j (kl) ( " j P *) (24)

we get

([$Ã, fÃ] j )(kl) 5
f (l) 2 f (k)

r kl

j (lk) (25)

Demanding r kl 5 r lk, we find that this operator is given by a simple antisym-

metric matrix with only a single entry per row and column. We obtain

i [$Ã, f ] i 5 i d f i (26)

The last construction is adopted from the following result due to Rieffel

(1993). Let (}, r ) be a metric space. We choose * 5 l2(} 3 } \diagonal)

as our Hilbert space and define

($Ãj )(x, y) 5 j (y, x)/ r (x, y), ( fÃj )(x, y) 5 f (x) j (x, y) (27)

The metric is then recovered from

d(x, y) 5 sup{ ) f ( y) 2 f (x) ) ; i f i L # 1} (28)

where i f i L 5 sup{ ) f (y) 2 f (x) ) / r (x, y)} is the Lipschitz number of f
(Weaver, 1996).
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